Infrared thermography as a non-destructive test for the inspection of reinforced concrete bridges: A review of the state of the art

  • Joaquin Humberto Aquino Rocha Universidade de Pernambuco
  • Yêda Vieira Póvoas Tavares Universidade de Pernambuco
Keywords: infrared thermography, bridge inspection, concrete pathologies

Abstract

This article aims to present the methodologies, advantages and limitations of the infrared thermography test for the inspection of reinforced concrete bridges. A systematic review of articles and academic material related to the area was carried out. This review focuses mainly on the passive application and on both laboratory and field studies. A critical approach to the information available was used in relation to its scope was used. The test is presented as a real alternative for the detection of defects in these structures, being more effective the more superficial these anomalies. Depending on the work to be done, it is necessary to contemplate some considerations to obtain better results. And it is effective in combination with other tests.

Downloads

Download data is not yet available.

References

Abdel-Qader, I., Yohali, S., Abudayyeh, O., Yehia, S. (2008), “Segmentation of thermal images for non-destructive evaluation of bridge decks”. NDT&E International, V.41, No. 5, pp. 395-405. https://doi.org/10.1016/j.ndteint.2007.12.003

ABNT-Associação Brasileira de Normas Técnicas. (2016), “NBR 9452: Inspeção de pontes, viadutos e passarelas de concreto – Procedimento” (Rio de Janeiro, Brasil: ABNT), p. 48.

ACI-American Concrete Institute. (2013), “228:2R-13 Report on nondestructive test methods for evaluation of concrete in structures” (Detroit, United States: ACI Publications), p. 82.

Aggelis, D., Kordatos, E., Soulioti, D., and Matikas, T. (2010), “Combined use of thermography and ultrasound for the characterization of subsurface cracks in concrete”, Constr. Build.Mater., V.24, No. 10, pp. 1888–1897. https://doi.org/10.1016/j.conbuildmat.2010.04.014

Alani, A., Aboutalebi, M., Kilic, G. (2014), “Integrated health assessment strategy using NDT for reinforced concrete bridges”, NDT & E International, V.61, pp. 80–94. https://doi.org/10.1016/j.ndteint.2013.10.001

Alfredo-Cruz, R., Quintero-Ortiz, L., Galán-Pinilla, C., Espinosa-García, E. (2015), “Evaluación de técnicas no destructivas en elementos de concreto para puentes”, Revista Fac. Ing., V.24, No. 40, pp. 83-96. http://dx.doi.org/10.19053/01211129.3850

Arndt, R. (2010), “Square pulse thermography in frequency domain as adaptation of pulsed phase thermography for qualitative and quantitative applications in cultural heritage and civil engineering”, Infrared Physics & Technology, V.53, No. 4, pp. 246–253. https://doi.org/10.1016/j.infrared.2010.03.002

ASTM. (2013b), “D4788-03: Standard Test Method for Detecting Delaminations in Bridge Decks Using Infrared Thermography”, (West Conshohocken, United States: ASTM International), p. 3. http://dx.doi.org/10.1520/D4788

ASTM. (2015a), “C1060-11a: Standard Practice for Thermographic Inspection of Insulation Installations in Envelope Cavities of Frame Buildings”, (West Conshohocken, United States: ASTM International), p. 7. http://dx.doi.org/10.1520/C1060-11AR15

ASTM. (2015b), “C1153-10: Standard Practice for Location of Wet Insulation in Roofing Systems Using Infrared Imaging”, (West Conshohocken, United States: ASTM International), p. 6. http://dx.doi.org/10.1520/C1153-10R15

ASTM-American Society of Testing Materials. (2013a), “C1046-95: Standard Practice for In-Situ Measurement of Heat Flux and Temperature on Building Envelope Components”, (West Conshohocken, United States: ASTM International), p. 7. http://dx.doi.org/10.1520/C1046 Bagavathiappan, S., Lahiri, B., Saravanan, T., Philip, J. (2013), “Infrared thermography for condition monitoring – A review”, Infrared Physics & Technology, V.60, No. 1, pp. 35-55. https://doi.org/10.1016/j.infrared.2013.03.006

Barreira, E., Almeida, R., Delgado, J. (2016), “Infrared thermography for assessing moisture related phenomena in building components”, V.101, pp. 251-269. https://doi.org/10.1016/j.conbuildmat.2016.02.026

Buyukozturk, O. (1998), “Imaging of concrete structures”, NDT&E International, V.31, No. 4,

pp. 233–243. https://doi.org/10.1016/S0963-8695(98)00012-7

Chang, P., Flatau, A., Liu, S. (2003), “Review paper: health monitoring of civil infrastructure”, Structural Health Monitoring, V.2, No. 3, pp. 257–267.

Cheng, Ch., Cheng, T., Chiang, Ch. (2008), “Defect detection of concrete structures using both infrared thermography and elastic waves”. Automation in Construction, V.18, No. 1, pp. 87-92.

Clark, M., McCann, D., Forde, M. (2003), “Application of infrared thermography to the non- destructive testing of concrete and masonry bridges”. NDT&E International, V.36, No. 4, pp. 265-

https://doi.org/10.1016/S0963-8695(02)00060-9

Dabous, S., Yaghi, S., Alkass, S., Moselhi, O. (2017), “Concrete bridge deck condition assessment using IR Thermography and Ground Penetrating Radar technologies”, Automation in Construction. http://dx.doi.org/10.1016/j.autcon.2017.04.006

Davis, A. (2003), “The nondestructive impulse response test in North America:1985–2001”, NDT&E International, V.36, No. 4, pp. 185–193.https://doi.org/10.1016/S0963-8695(02)00065-8 Ellenberg, A., Kontsos, A., Moon, F., Bartoli, I. (2016). “Bridge Deck delamination identification from unmanned aerial vehicle infrared imagery”, Automation in Construction, V.72, No. 2, pp. 155-165. https://doi.org/10.1016/j.autcon.2016.08.024

Estes, A., Frangopol, D. (2003), “Updating bridge reliability based on bridge management systems visual inspection results”, J. Bridge Eng., V.8, No. 6, pp. 374–382.

Farrag, S., Yehia, S., Qaddoumi, N. (2016), “Investigation of Mix-Variation Effect on Defect- Detection Ability Using Infrared Thermography as a Nondestructive Evaluation Technique”, J. Bridge Eng., V.21, No. 3, pp. 1-15. http://dx.doi.org/10.1061/(ASCE)BE.1943-5592.0000779 FLIR-Forward Looking Infrared. (2013), “User’s manual FLIR Exx Series” (Wilsonville, United States: FLIR), p. 100.

Fox, M., Goodhew, S., Wilde, P. (2016), “Building defect detection: External versus internal thermography”, Building and Environment, V.105, pp. 317-331.

GPO-Government Publishing Office. (2015), “Electronic Code of Federal Regulations: Subpart C, Title 23, 650.311” (Washington D.C., United States: GPO)

Gucunski, N., Imani, A., Romero, F., Nazarian, S., Yuan, D., Wiggenhauser, h., Shokouhi, P., Taffe, A., Kutrubes, D. (2013), “Nondestructive Testing to Identify Concrete Bridge Deck Deterioration” (Washington D.C., United States: SHRP 2 Research Reports, Transportation Research Board of the National Academies), p. 85. https://doi.org/10.17226/22771

Gucunski, N., Kee, S., La, H., Basily, B., Maher, A. (2015), “Delamination and concrete quality assessment of concrete bridge decks using a fully autonomous RABIT platform”, Structural Monitoring and Maintenance, V.2, No. 1, pp.19-34. http://dx.doi.org/10.12989/smm.2015.2.1.019 Herrmann A. (2013), “ASCE 2013 Report card for America’s Infrastructure” (Washington D.C., United States: ASCE), p. 74. http://dx.doi.org/10.1061/9780784478837

Hiasa, S. (2016), “Investigation of infrared thermography for subsurface damage detection of concrete structures”. Tese de Doutorado, University of Central Florida, p. 224.

Hiasa, S., Birgul, R., Catbas, F. (2016), “Infrared thermography for civil structural assessment: demonstrations with laboratory and field studies”, J Civil Struct Health Monit, V.6, No. 3, pp. 619- 636. http://dx.doi.org/10.1007/s13349-016-0180-9

Hiasa, S., Birgul, R., Catbas, N. (2017a), “Investigation of effective utilization of infrared thermography (IRT) through advanced finite element modeling”, Construction and Building Materials, V.150, pp. 295-309. http://dx.doi.org/10.1016/j.conbuildmat.2017.05.175

Hiasa, S., Birgul, R., Catbas, N. (2017b), “A data processing methodology for infrared thermography images of concrete bridges”, Computers & Structures, V.190, pp. 205-218. https://doi.org/10.1016/j.compstruc.2017.05.011

Hiasa, S., Catbas, F., Matsumoto, M., Mitani, K. (2016), “Monitoring concrete bridge decks using infrared thermography with high speed vehicles. Structural Monitoring and Maintenance”, V.3, No. 3, pp. 277-296. https://doi.org/10.12989/smm.2016.3.3.277

Holt, F., Manning, D. (1980), “Detecting Delamination in Concrete Bridge Decks”, Concrete International, V.2, No. 11, pp. 34-41.

Islam, A., Li, F., Hamid, H., Jaroo, A. (2014), “Bridge Condition Assessment and Load Rating using Dynamic Response” (Youngstown, United States: ODOT), p. 128.0

Jadin, M., Taib, S. (2012), “Recent progress in diagnosing the reliability of electrical equipment by using infrared thermography”, Infrared Physics & Technology, V.55, No. 4, pp. 236–245. https://doi.org/10.1016/j.infrared.2012.03.002

Jain, K., Bhattacharjee, B. (2011), “Application of fuzzy concepts to the visual assessment of deteriorating reinforced concrete structures”, Journal of Construction Engineering Management, V.138, No.3, pp. 399-408. http://dx.doi.org/10.1061/(ASCE)CO.1943-7862.0000430

Kee, S., Oh, T., Popovics, J., Arndt, R., Zhu, J. (2012), “Nondestructive bridge deck testing with air-coupled impact-echo and infrared thermography”. Journal of Bridge Engineering, V.17, No. 6, pp. 928-939. http://dx.doi.org/10.1061/(ASCE)BE.1943-5592.0000350

Lahiri, B., Bagavathiappan, S., Jayakumar, T., Philip, J. (2012) “Medical applications of infrared thermography: a review”, Infrared Physics & Technology, V.55, No. 4, pp. 221–235. https://doi.org/10.1016/j.infrared.2012.03.007

Maierhofer, C., Arndt, R., Rollig, M. (2007), “Influence of concrete properties on the detection of voids with impulse-thermography”, Infrared Physics & Technology, V.49, No. 3, pp. 213–217.

Maierhofer, C., Arndt, R., Rollig, M., Rieck, C., Walther, A., Scheel, H., Hillemeier, B. (2006), “Application of impulse thermography for non-destructive assessment of concrete structures”, Cement & Concrete Composites, V.28, No. 4, pp. 393-401. https://doi.org/10.1016/j.cemconcomp.2006.02.011

Maldague, X. (2001), “Theory and Practice of Infrared Technology for Nondestructive Testing”

(New York, United States: John Wiley and Sons), p. 704. ISBN: 978-0-471-18190-3

Maser, K., Roddis, W. (1990), “Principles of thermography and radar for bridge deck assessment”, J. Transport. Eng., V.116, No. 5, pp. 583–601. https://doi.org/10.1061/(ASCE)0733- 947X(1990)116:5(583)

McCan, D., Forde, M. (2001), “Review of NDT methods in the assessment of concrete and masonry structures”, NDT & E International, V.34, No. 2, pp. 71–84. https://doi.org/10.1016/S0963- 8695(00)00032-3

Mendes, P., Moreira, M., Pimienta, P. (2012), “Pontes de concreto armado: efeitos da corrosão e da variação do módulo de elasticidade do concreto”, IBRACON de Estruturas e Materiais, V.5, No. 3, pp. 389-401. http://dx.doi.org/10.1590/S1983-41952012000300008

Meola, C., Carlomagno, G., Squillace, A., Giorleo, G. (2002), “Non-destructive control of industrial materials by means of lock-in thermography”, Measurement Science & Technology, V.13, No. 10, pp. 1583–1590. https://doi.org/10.1088/0957-0233/13/10/311

Meola, C. (2007), “Infrared thermography for masonry structure”, Infrared Physics & Technology, V.49, No. 3, pp. 228–233. https://doi.org/10.1016/j.infrared.2006.06.010

Meola, C. (2012), “Origin and theory of infrared thermography”, in: C. Meola (Ed.), Infrared Thermography Recent Advances and Future Trends, Bentham eBooks, pp. 3–28.

Montanini, R. (2010), “Quantitative determination of subsurface defects in a reference specimen made of plexiglas by means of lock-in and pulsed phase infrared thermography”, Infrared Physics & Technology, V.53, No. 5, pp. 363–371. https://doi.org/10.1016/j.infrared.2010.07.002 O’Grady, M., Lechowska, A., Harte, A. (2016), “Infrared thermography technique as in-situ method of assessing heat loss through thermal bridging”, Energy and Buildings, V.135, pp. 20-32. https://doi.org/10.1016/j.enbuild.2016.11.039

Oh, T., Kee, S., Arndt, R., Popovics, J., Zhu, J. (2013), “Comparison of NDT Methods for Assessment of a Concrete Bridge Deck”, Journal of Engineering Mechanics, V.139, No. 3, pp. 305-

http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000441

Pines, D., Aktan, A. (2002), “Status of structural health monitoring of long-span bridges in the United States”, Prog. Struct. Mater. Eng., V.4, No. 4, pp. 372–380.

Pintan, N., Berenguer, R., Silva A., Lins, C., Monteiro, E. (2015), “Pathological Manifestations and the Study of Corrosion Present on Bridges of the City of Recife”, Electronic Journal of Geotechnical Engineering, V.20, No. 24, pp. 11893-11907.

Poblete, A., Pascual, M. (2007), “Thermographic measurement of the effect of humidity in mortar porosity”, Infrared Physics & Technology, V.49, No. 3, pp. 224–227. https://doi.org/10.1016/j.infrared.2006.06.009

Rehman, S., Ibrahim, Z., Memon, S., Jameel, M. (2016), “Nondestructive test methods for concrete bridges: A review”, Construction and Building Materials, V.107, No. 15, pp. 58-86. http://dx.doi.org/10.1016/j.conbuildmat.2015.12.011

Sakagami, T., Kubo, S. (2002), “Development of a new non-destructive testing technique for quantitative evaluations of delamination defects in concrete structures based on phase delay measurement using lock-in thermography”, Infrared Physics & Technology, V.43, No. 3-5, pp. 311-316. https://doi.org/10.1016/S1350-4495(02)00157-3

Scott, M., Rezaizadeh, A., Delahaza, A., Santos, C., Moore, M., Graybeal, B. (2003), “A comparison of nondestructive evaluation methods for bridge deck assessment”, NDT&E International, V.36, No. 4, pp. 245–255. https://doi.org/10.1016/S0963-8695(02)00061-0

Sham, J., Lo, T., Memon, S. (2012), “Verification and application of continuous surface temperature monitoring technique for investigation of nocturnal sensible heat release characteristics by building fabrics”, Energy Build., V.53, pp. 108–116. https://doi.org/10.1016/j.enbuild.2012.06.018

Uemoto, T. “Maintenance of concrete structure and application of nondestructive inspection in Japan”, in: T. Uemoto (Ed.), Proc. Non Destructive Testing in Civil Eng., ELSEVIER, 2000, Kidlington: OX (UK), (2000) pp. 1–11.

Vaghefi, K., Ahlborn, T., Harris, D., Brooks, C. (2015), “Combined Imaging Technologies for Concrete Bridge Deck Condition Assessment”. Journal of Performance of Constructed Facilities, V.29, No. 4, pp. 1-8. http://dx.doi.org/10.1061/(ASCE)CF.1943-5509.0000465

Vaghefi, K., Oats, R., Harris, D., Ahlborn, T., Brooks, C., Endsley, K., Roussi, C., Shuchman, R., Burns, J., Dobson, R. (2012), “Evaluation of Commercially Available Remote Sensors for Highway Bridge Condition Assessment”, Journal of Bridge Engineering, V. 17, No. 6, pp. 886-895. http://dx.doi.org/10.1061/(ASCE)BE.1943-5592.0000303

Vaghefi, K., Melo e Silva, H., Harris, D., Ahlborn, R. (2011), “Application of thermal IR imagery for concrete bridge inspection”. In: PCI National Bridge Conference, PCI/NBC, Salt Lake City: UT (USA), pp. 1-12.

Vemuri, S., Atadero, A. (2017), “Case Study on Rapid Scanning Techniques for Concrete Bridge Decks with Asphalt Overlay: Ground-Penetrating Radar and Infrared Thermography”, Pract. Period. Struct. Des. Constr., V.22, No. 2, pp. 1-8. https://doi.org/10.1061/(ASCE)SC.1943- 5576.0000313

Venkataraman, B., Raj, B. (2003), “Performance parameters for thermal imaging systems”, Insight, V.45, No. 8, pp. 531-535. https://doi.org/10.1784/insi.45.8.531.52914

Vilbig, R. (2013), “Air-Coupled and ground-coupled ground penetrating radar techniques”, Tese de Mestrado, Northeastern University - Boston, p. 60.

Vitório, J., Barros, R. (2013), “Análise dos danos estruturais e das condições de estabilidade de 100 pontes rodoviárias no Brasil”, In: P. Cruz, R. Calçada, T. Mendonça (Eds), Segurança, Conservação e Reabilitação de Pontes, ASCP, Porto: Portugal, pp. 62-70.

Washer, G. (2012), “Advances in the use of thermographic imaging for the condition assessment of bridges. Bridge Structures”, V.8, No. 2, pp. 81-90. http://dx.doi.org/10.3233/BRS-2012-0041 Washer, G., Fenwick, R., Bolleni, N. (2009), “Development of Hand-held Thermographic Inspection Technologies” (Jefferson City, United States: MODOT), p. 120.

Washer, G., Fenwick, R., Bolleni, N. (2010), “Effects of Solar Loading on Infrared Imaging of Subsurface Features in Concrete”, Journal of Bridge Engineering, V.15, No. 4, pp. 384-390. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000117

Washer, G., Trial, M., Jungnitsch, A., Nelson, S. (2015), “Field Testing of Hand–Held Infrared Thermography, Phase II” (Columbia, United States: MODOT), p. 104.

Watase, A., Birgul, R., Hiasa, S., Matsumoto, M., Mitani, K., Catbas, F. (2015), “Practical identification of favorable time windows for infrared thermography for concrete bridge evaluation”, Construction and Building Materials, V.101, No. 1, pp. 1016-1030. https://doi.org/10.1016/j.conbuildmat.2015.10.156

Yehia, S., Adudayyeh, O., Nabulsi, S., Abdelqader, I. (2007), “Detection of common defects in concrete bridge decks using nondestructive evaluation techniques”, Journal of Bridge Engineering, V.12, No. 2, pp. 215-225. https://doi.org/10.1061/(ASCE)1084-0702(2007)12:2(215)

Yuanlin, L., Qingju, T., Chiwu, B., Chen, M., Pingshan, W., Jiansuo, Z. (2015), “Pulsed infrared thermography processing and defects edge detection using FCA and ACA”, Infrared Physics & Technology, V.72, pp. 90-94. https://doi.org/10.1016/j.infrared.2015.07.010

Zhang, Z., Tsai, N., Machin, G. (2009), “Radiometric Temperature Measurements” (Oxford, United Kingdom: Academic Press), p. 480. ISBN: 978-0-123-75091-4

Zhao, H., Zhou, Z., Fan, J., Li, G., Sun, G. (2017), “Application of lock-in thermography for the inspection of disbonds in titanium alloy honeycomb sandwich structure”, Infrared Physics & Technology, V.81, pp. 69-78. https://doi.org/10.1016/j.infrared.2016.12.020

Published
2017-09-29
How to Cite
Aquino Rocha, J. H., & Vieira Póvoas Tavares, Y. (2017). Infrared thermography as a non-destructive test for the inspection of reinforced concrete bridges: A review of the state of the art. Revista ALCONPAT, 7(3), 200 - 214. https://doi.org/10.21041/ra.v7i3.223
Section
Review