Service life analysis of reinforced concrete structure under uniform corrosion through ANN model coupled to the FEM

  • Emerson Felipe Felix Escola de Engenharia de Sao Carlos, Universidade de Sao Paulo http://orcid.org/0000-0002-8928-9474
  • Tito José Rodrigues Balabuch Escola de Engenharia de Sao Carlos, Universidade de Sao Paulo http://orcid.org/0000-0003-2274-7626
  • Mariana Correa Posterlli Escola de Engenharia de Sao Carlos, Universidade de Sao Paulo
  • Edna Possan Universidade Federal da Integraçao Latino-Americana
  • Rogerio Carrazedo Escola de Engenharia de Sao Carlos, Universidade de Sao Paulo
Keywords: reinforced concrete, reinforcement corrosion, service life, Artificial Neural Networks, Finite Element Method

Abstract

The present work intends to analyze and numerically model the corrosion process, estimating the service life of concrete structures. The modelling process was divided in two stages, initiation and propagation. The modeling of the initiation phase was carried out by Artificial Neural Networks (ANN), and the modeling of the propagation phase was done by means of Finite Element Method (FEM). The results show the efficiency of the model generated by the coupling of ANN to the FEM to analyze and study the durability of reinforced concrete structures under uniform corrosion, and the numerical model applicability to estimate the service life of reinforced concrete structures.

Downloads

Download data is not yet available.

Author Biography

Emerson Felipe Felix, Escola de Engenharia de Sao Carlos, Universidade de Sao Paulo

Graduado em Engenharia Civil de Infraestrutura (2016) pela Universidade Federal da Integracao Latino-Americana (UNILA). Mestrando do Programa de Engenharia de Estruturas da Escola de Engenharia de Sao Carlos, USP, com pesquisas relacionadas à modelagem numerica e computacional via MEF e RNA, atuando nas áreas de estruturas de concreto, carbonatasao, durabilidade e vida útil de estruturas de concreto.

References

Andrade, C. (1992), “Manual para diagnóstico de obras deterioradas por corrosão de armaduras”, Tradução de Antônio Carmona e Paulo Helene, São Paulo: PINI, p. 104.

Andrade, J. J. O., Possan, E., Dal Molin, D. C. C. (2017), “Considerations about the service life prediction of reinforced concrete structures inserted in chloride environments”, Journal of Building Pathology and Rehabilitation, V. 2, p. 1-8.

Associação Brasileira de Normas Técnicas (2014), NBR 6118 - Projeto de estruturas de concreto, Rio de Janeiro, ABNT.

Bakker, R. M. F. (1988), Initiation period. In: Schiess P. “Corrosion of steel in concrete”, London, Chapman and Hall, cap. 3, pp. 22-55.

Biondini, F., Frangopol D. M. (2017), “Time-variant redundancy and failure times of deteriorating concrete structures considering multiple limit states”, Structure and Infrastructure Engineering, V.13, pp. 94-106.

Bob, C., Afana, E. (1993), “On-site assessment of concrete carbonation”, Proceedings of the International Conference Failure of Concrete Carbonation, RILEM, Bratislava, pp. 84-87.

Broomfield, J. P. (2007), “Corrosion of steel in concrete: understanding, investigation and repair”. 2. Ed. New York, Taylor & Francis, pp. 294.

Carmona, A. F., Marega, A. (1988), “Retrospectiva da patologia no Brasil: Estudo Estatístico”, in: Jornadas em Español y Portugués sobre Estructuras y Materiales, CEDEX, IETcc, pp. 325-348.

Chang, C. F., Chen, J. W. (2006), “The experimental investigation of concrete carbonation depth”, Cement and Concrete Research, V.36, pp. 1760-1767.

Coda, H. B. (2003), “Análise não linear geométrica de sólidos e estruturas: uma formulação posicional baseada no MEF”, Volume II, Departamento de Estruturas, Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos.

Comission Permanente del Hormigón, EHE (2008), “Instrucción de Hormigón Estructural. Ministério de obras públicas e urbanismo”. Madrid, Espanha.

Dal Molin, D. C. C. (1988), “Fissuras em estruturas de concreto armado: análise das manifestações típicas e levantamento de casos ocorridos no Estado do Rio Grande do Sul”, Dissertação de Mestrado em Engenharia, Universidade Federal do Rio Grande do Sul, Porto Alegre.

Dyer, T. (2015), “A durabilidade do concreto”. Rio de Janeiro, Editora Ciência Moderna, pp. 536.

Ellingwood, B. R., Frangopol, D. M. (2016), “Introduction to the state of the art collection: risk-based lifecycle performance of structural systems”, Journal of Structural Engineering, V.142, pp. 1.

Felix, E. F. (2016), “Desenvolvimento de software para a estimativa da profundidade de carbonatação, vida útil e captura de CO2 de estruturas de concreto empregando RNA’s”, Trabalho de conclusão de curso, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu.

Félix, E. F., Carrazedo, R., Possan, E. (2017), “Análise Paramétrica da carbonatação em estruturas de concreto armado via Redes Neurais Artificiais”, Revista ALCONPAT, V.7, N. 3, pp. 302-316.

Geiker, M. R., Polder, R. B. (2016), “Experimental support for new electro active repair method for reinforced concrete”, Materials and Corrosion, V.67, pp. 600-606.

Graeff, A. G. (2007), “Avaliação experimental e modelagem dos efeitos estruturais da propagação da corrosão em elementos de concreto armado”, Dissertação de Mestrado em Engenharia, Universidade Federal do Rio Grande do Sul, Porto Alegre.

Kari, O. P., Puttonen, J., Skantz, E. (2014), “Reactive transport modelling of long-term carbonation”, Cement and Concrete Composites, V.52, pp. 42-53.

Köliö, A., Pakkala, T. A., Hohti, H., Laukkarinen, A., Lahdensivu, J., Mattila, J., Pentti, M. (2017), “The corrosion rate in reinforced concrete facades exposed to outdoor environment”, Materials and Structures, V.50, pp. 1-16.

Mehta, P. K., Monteiro, P. J. M. (2014), “Concreto: microestrutura, propriedades e materiais”. 2.ed. São Paulo, IBRACON, pp.751.

Neville, A. M. (1997), “Propriedades do concreto”, São Paulo: PINI, pp. 828.

Possan, E. (2010), “Modelagem da carbonatação e previsão de vida útil de estruturas de concreto em meio urbano”, Tese de Doutorado em Engenharia, Programa de Pós-Graduação em Engenharia Civil, Universidade Federal do Rio Grande do Sul, Porto Alegre.

Rao, A. S., Lepech, M. D., Kiremidjian, A. S., Sun X. Y. (2017), “Simplified structural deterioration model for reinforced concrete bridge piers under cyclic loading”, Structure and Infrastructure Engineering, V.13, pp. 55-66.

Smolczyk, H. G. (1969), “Written Discussion”, proceeding of the 1969 International Symposium on the Chemistry of Cement, Part III, v. II/4, pp. 369-384.

Stewart, M. G., Rosowsky, D. V. (1998), “Structural safety and serviceability of concrete bridges subject to corrosion”, Journal of Infrastructure Systems V.4, pp. 146-155.

Tuutti, K. (1982), “Corrosion of steel in concrete”. Stockholm, Swedish Cement and Concrete Research Institute.

Val, D. V., Melchers, R. E. (1997), “Reliability of deteriorating RC slab bridges”, Journal of Structural Engineering, V.123, pp. 1638-1644.

Vesikari, E. (1988), “Service life prediction of concrete structures with regard to corrosion of reinforcement”. Technical Research Centre of Finland, report No. 553, Finland p. 53.

Vu, K. A. T., Stewart, M. G. (2000), “Structural reliability of concrete bridges including improved chloride-induced corrosion models”, Structural Safety, V.22, pp. 313-333.

Yanaka, M, Ghasemi, S. H., Nowak, A. (2016), “Reliability-based and life-cycle cost-oriented design recommendations for prestressed concrete bridge girders”, Structural Concrete, V.17, pp. 836-847.

Published
2018-01-31
How to Cite
Felix, E. F., Rodrigues Balabuch, T. J., Correa Posterlli, M., Possan, E., & Carrazedo, R. (2018). Service life analysis of reinforced concrete structure under uniform corrosion through ANN model coupled to the FEM. Revista ALCONPAT, 8(1), 1 - 15. https://doi.org/10.21041/ra.v8i1.256
Section
Basic Research